|
|
The maximum likelihood identification method applied to insect morphometric data |
Jean-Pierre Dujardin1, Sebastien Dujardin2, Dramane Kaba3, Soledad Santillán-Guayasamin4, Anita G. Villacís4, Sitha Piyaselakul5, Suchada Sumruayphol6, Yudthana Samung6, Ronald Morales Vargas6 |
1IRD, UMR 177 IRD-CIRAD INTERTRYP, Campus international de Baillarguet, Montpellier, France; E-mail: dujjepi@gmail.com 2école des Technologies Numériques Appliquées, Paris, France; E-mail: sdujardi@gmail.com 3Institut Pierre Richet, Institut National de Santé Publique, Abidjan, C?te d'Ivoire; E-mail: kaba.dramane2@gmail.com 4Center for Research on Health in Latin America, School of Biological Sciences, Pontifical Catholic University of Ecuador, Quito, Ecuador, Av. 12 de Octubre 1076 y Roca; E-mail: solsg.25@gmail.com; agvillacis@puce.edu.ec 5Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; E-mail: sitha.piy@ mahidol.ac.th 6Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; E-mail: suchada. sum@mahidol.ac.th; ronald.mor@mahidol.ac.th |
|
|
Abstract To distinguish species or populations using morphometric data is generally processed through multivariate analyses, in particular the discriminant analysis. We explored another approach based on the maximum likelihood method. Simple statistics based on the assumption of normal distribution at a single variable allows to compute the chance of observing a particular data (or sample) in a given reference group. When data are described by more than one variable, the maximum likelihood (MLi) approach allows to combine these chances to find the best fit for the data. Such approach assumes independence between variables. The assumptions of normal distribution of variables and independence between them are frequently not met in morphometrics, but improvements may be obtained after some mathematical transformations. Provided there is strict anatomical correspondence of variables between unknown and reference data, the MLi classification produces consistent classification. We explored this approach using various input data, and compared validated classification scores with the ones obtained after the Mahalanobis distance-based classification. The simplicity of the method, its fast computation, performance and versatility, make it an interesting complement to other classification techniques.
|
|
Fund:This study was financed by the Chaires Merieux foundation (Paris, France) and Pontifical Catholic University of Ecuador (M 13480). |
Corresponding Authors:
Jean-Pierre Dujardin
E-mail: sdujardi@gmail.com
|
|
|
|
[1] |
Jesus Marugán-Lobón. The Woodcock’s head: Resolving a morphological oddity using geometric morphometrics[J]. Zoological Systematics, 2017, 42(1): 102-107. |
[2] |
Ming Bai. Geometric morphometrics: Current and future in China[J]. Zoological Systematics, 2017, 42(1): 1-3. |
[3] |
Norman MacLeod. Morphometrics: History, development methods and prospects[J]. Zoological Systematics, 2017, 42(1): 4-33. |
[4] |
Ming Bai, Jing Li, Wencheng Wang, Rolf G. Beutel, Benjamin Wipfler, Wangang Liu, Sha Li, Mengna Zhang, Yuanyuan Lu, Xingke Yang. A web based tool to merge geometric morphometric data from multiple characters[J]. Zoological Systematics, 2017, 42(1): 34-45. |
[5] |
Cesar Parra, Jonathan Liria. Shell geometric morphometrics in Biomphalaria glabrata (Mollusca: Planorbidae) uninfected and infected with Schistosoma mansoni[J]. Zoological Systematics, 2017, 42(1): 59-64. |
[6] |
Rongrong Li, Hufang Zhang, Shengcai Li, Ming Bai. Geometric morphometric analysis of Eysarcoris guttiger, E. annamita and E. ventralis (Hemiptera: Pentatomidae)[J]. Zoological Systematics, 2017, 42(1): 90-101. |
|
|
|
|